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Introduction and background
What is the offline nested attack?

MIFARE classic cards store data in sectors protected by uU48-bit secret keys
(two Keys per sector, Key A and Key B). Normally you must know a sector’s
key to authenticate and access that sector’s data. The offline nested
authentication attack is a clever way to recover all the keys on a MIFARE
card by using just one known key as a starting point. In simple terms, if
you already have one valid key (for one sector), you can trick the card
into revealing information that lets you gradually deduce the other keys
without any help from a legitimate reader [1] [2]. This attack is
“offline” in the sense that after you collect some data from the card via
some wireless queries, the heavy work of cracking the key is done on your
computer, not on the card.

To perform the nested attack, the attacker must have at least one known
key for the card. Often, one key is known because some MIFARE Classic
systems use default keys (like FFFFFFFFFFFF or other well-known values) or
perhaps the attacker already cracked one key using another method [1] [3].
If no key is known at first, attackers can use a slower preliminary attack
(for example the “Darkside” attack implemented in the MFCUK tool) to
recover one Key by exploiting error messages and parity bits (more on this
later) [4]. Once a single valid key is obtained, the faster nested attack
(often using a tool called MFOC) can be used to retrieve all the remaining
keys [1] [3].

Before diving into the steps, we need to review how MIFARE Classic
authentication works as well as some key concepts (nonces, keystrean,
parity bits) that this attack abuses.



MIFARE Classic authentication basics

MIFARE Classic uses a challenge-response authentication with a proprietary
stream cipher called Cryptol (48-bit keys). When a reader wants to
authenticate to a sector of the card, the sequence (simplified) is:

1. Reader —> Card: “I want to authenticate to Sector X with Key A/B.”

2. Card —> Reader: Card generates a random 32-bit number called a nonce
(let’s call it Nggq) and sends it to the reader as a challenge. This
nonce is essentially a random “puzzle piece” the reader must encrypt
correctly to prove it knows the sector key. In the very first
authentication of a session, this nonce is sent in plaintext
(unencrypted) [4].

3. Reader -> Card: The reader computes a response using N, and its own
random number Ng.,4er, €ncrypting these with the shared key. (Note: the
reader encrypts Nguq and a random Ng.,q.r Under the sector key and sends
them.)

4. Card —> Reader: The card verifies the reader’s response. If correct, it
then sends back an encrypted version of Ngi.u4.r to authenticate itself to
the reader. Now both sides trust each other and share an encrypted
session. At this point, the reader is “logged in” to that sector and
can read/write data. ALl further communications are encrypted with the
keystream generated by Cryptol.

The role of the nonce: The nonce from the card N; is a fresh random
challenge each time to ensure the reader really knows the key for that
session. It prevents replay attacks because the reader’s response must
match that specific random challenge. In Cryptol, this nonce also seeds
the cipher’s keystream generator.
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A critical fact about MIFARE Classic is that its random number generator
is not truly random — it’s a simple linear feedback shift register (LFSR)
that cycles through values in a predictable way [2]. In fact, there are
only 2% (65,536) possible nonces, and the sequence repeats every ~618
milliseconds if you continuously power-cycle the card [2]. This pseudo-
random number generator (PRNG) is one key weakness the attack will
exploit.

Keystream and encryption: Cryptol produces a keystream, which is a
sequence of pseudo-random bits derived from the secret key and the nonce.
The plaintext messages are XORed with this keystream to produce the
ciphertext. XOR has the useful property that if you know the plaintext and
the ciphertext, you can derive the keystream. For example, if a plaintext
byte was 0x3A and the ciphertext byte is 0xC5, then the keystream byte
must be OxFF because 0x3A @ OxFF = 0xC5.
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In MIFARE Classic’s auth, once the card and reader are synchronized, all
further messages (including subsequent nonces) are encrypted by XORing
with the keystream.

Parity bits: Every byte transmitted in MIFARE Classic comes with an extra
parity bit for error detection (ensuring the number of ¢1’ bits in that
byte is either even or odd as expected). Normally, parity bits are just
computed over plaintext and not encrypted. However, MIFARE Classic’s
designers made a mistake: the parity bit is computed on the plaintext but
then the parity bit itself is transmitted without proper encryption - the
first bit of the keystream for the next byte is used to encrypt the parity
bit of the current byte [1]. This means if an attacker knows or guesses
something about the plaintext, they can often detect it via parity, or
vice versa. In short, the parity mechanism “leaks” a tiny bit of
information about the encrypted data [1]. Attackers will use this leak as
a side-channel to narrow down guesses (both for nonces and for keys), as
we’ll see.



The nested authentication attack

Step 1: Use a known key to authenticate (initial
sector)

The attacker begins by authenticating to a sector of the card for which
they already know the key (either a default key or one recovered earlier).
This is the “entry point.” For example, suppose the attacker knows Key A
for Sector 0@ (commonly sector @ has default keys in some systems). The
attacker poses as a reader and sends an auth request for Sector 0 using
Key A. The card responds with a random nonce N1. Because this is the first
authentication of the session, N1 is sent in plaintext over the air [4].
The attacker captures this N1.

- Why do this? We need to establish an encrypted session with the card
using a known key so that we can perform the nested auth next.
Capturing N1 also gives us a reference point for the card’s random
number state. Since the card’s PRNG is predictable, knowing one nonce
will help us predict the next one.

At this point, the attacker (as a reader) completes the handshake for
Sector 0 using the known key, proving knowledge of the key, and the card
and attacker now have an encrypted channel based on Key A of Sector 0. Any
further commands the attacker sends will be encrypted with the keystream
derived from Key A.

Step 2: Send a nested authentication request for target
sector (unknown key)

Now the real trick: The attacker immediately initiates another
authentication, but this time for a different sector (say Sector Y) whose
key they want to recover. Crucially, the attacker does not yet know the
key for Sector Y - that’s the target of the attack. However, because the
attacker is still in the middle of an encrypted session from Step 1, they
don’t just send a normal auth request. Instead, they send the auth command
for Sector Y encrypted under the current session (which is using the known
Key A of Sector 0).

What happens inside the card is interesting: The card receives the
encrypted command from the attacker: “authenticate to Sector Y”. Since the
card is currently decrypting everything with the Sector 0 key, it will
decrypt that command and see “Oh, the reader wants to authenticate to
Sector Y now.” The card then resets its internal cipher state to use
Sector Y’s key for the next authentication round [1]. In other words, the
card prepares to perform a fresh auth for Sector Y, and from this point,
the Cryptol cipher is now re-initialized with the (unknown) Kkey for Sector
Y. This is by design in MIFARE - a reader can authenticate to a new sector
without fully powering down the card, and the card will switch keys
internally.



Importantly, because this auth command was issued inside an encrypted
session, the card will treat the new authentication as if it’s also within
encryption. As a result, the challenge nonce for Sector Y, call it N2,
will be sent encrypted rather than in plaintext [5]. This is the core of
the “nested” trick: we force the card to encrypt its next challenge using
a key we don’t know, and we’ll exploit that.

So in summary for this step: The attacker sends an encrypted “auth to
Sector Y” command; the card switches to Key Y and generates a random
challenge N2 for the new auth, and sends encrypted {N2} (braces denote
encryption) to the attacker. The attacker now has an encrypted blob that
represents the card’s random number N2 XORed with some keystream derived
from Key Y. At this moment, the attacker does not know N2 (it’s scrambled)
and doesn’t know Key Y either - on the surface this looks hopeless. But
the next steps show how the attacker pries out the value of N2 and,
eventually, the key.

Step 3: Predict the card’s random nonce (N2) using the
weak PRNG

Because of the weak random number generator, the attacker has a very good
chance of figuring out what N2 actually is (even though they only received
it in encrypted form). Here’s how:

- The attacker knows the previous nonce N1 (from Step 1, in plaintext).
They also likely know when N2 was generated relative to N1 (by precise
timing of their commands). In MIFARE Classic’s PRNG, if you know one
output and the time between outputs, you can often predict the next
output because the RNG state advances in a simple, deterministic way
each clock tick [2]. Essentially the “distance” (number of LFSR steps)
between N1 and N2 depends on how quickly the attacker issued the second
auth. Attackers can deliberately control or estimate this timing to
narrow down the possibilities for N2. For example, if the attacker
starts the second auth almost immediately, N2 might just be the next
value in the RNG sequence after N1 (or after a fixed small number of
cycles), making it highly predictable.

- Moreover, the PRNG only has 2% possible values [2]. This is a tiny
space by cryptographic standards. The attacker can brute-force all
65,536 possibilities if needed and test which one makes sense. In
practice they don’t even have to try them all - they can combine this
with parity checks to eliminate many of them quickly.

- Parity bit clues: Remember those parity bits attached to each byte? The
encrypted nonce {N2} comes with parity bits that were calculated from
the plaintext N2. The attacker can see these parity bits over the air.
Because the parity is computed on the plaintext but one bit of
keystream was used to encrypt each parity bit, not all bit patterns of
{N2} are possible for a given plaintext N2. In fact, by examining the
parity of the encrypted bytes, the attacker gains 3 bits of information
about N2, reducing the uncertainty by a factor of 8 [1] [2]. Put



simply, some candidates of N2 are inconsistent with the observed parity
bits, so the attacker can throw those out.

Combining these factors, the attacker can deduce the actual nonce N2 (or
at worst, narrow it down to a very small handful of possibilities). In
many cases, the timing plus parity analysis makes N2 essentially
predictable to the attacker [4] [2].

For example, suppose after timing and parity filtering, the attacker
believes the card’s second random challenge N2 is likely 0x5A3C1F08 (just
as a hypothetical value). If they’re correct, they now effectively know
the plaintext that the card generated for the second challenge.

Step U4: Derive the keystream used for the encrypted
nonce

Now comes a crucial payoff: if the attacker knows the plaintext N2 (from
Step 3’s prediction) and they have the ciphertext (the encrypted {N2}
captured from the card), they can compute the keystream that was used to
encrypt N2. This is done by a simple XOR:

Keystream bits = N2 @ {N2}

Because plaintext @ keystream = ciphertext, rearranging this gives
keystream = plaintext @ ciphertext. This operation yields 32 bits of the
keystream produced by the unknown Key Y during that authentication attempt
[2]. In other words, the attacker now knows the exact sequence of 32 bits
that Cryptol generated when it was initialized with Key Y and when the
card nonce was N2.

Why is this valuable? Because those 32 keystream bits carry a lot of
information about Key Y. Cryptol’s keystream generator is a u48-bit LFSR
with a filtering function, and knowing 32 output bits (especially output
bits that correspond to the start of an authentication session) puts heavy
constraints on the internal state (which includes the secret key). In
fact, at this point the search space for the key has been reduced from 2%
down to 2% possibilities [2]. In terms of scale, it’s like having solved
99% of a thousand-piece puzzle with only a single small piece missing.

To clarify: the attacker has not directly “decrypted” anything yet (they
don’t have the sector’s data), but they have a slice of the cipher’s
output (keystream) that they shouldn’t normally have. This is like knowing
how a padlock’s pins align; it dramatically cuts down the effort to
replicate the actual key.

Technical note: The Cryptol’s cipher design allows an attacker who knows
one nonce and the corresponding 32-bit keystream to perform a “key
recovery” attack. This can involve things 1like solving for the LFSR state
or simply brute forcing the remaining unknown key bits. Since 16 unknown
bits remain (2¢ combinations), a brute force is very feasible on a modern
PC (on the order of milliseconds to minutes, depending on optimizations)



[2] [5]. There are also analytical techniques to derive the key faster
than brute force using the structure of Cryptol (e.g. direct inversion
using the known keystream bits [1]), but the end result is the same: the
attacker can find the key relatively quickly.

Step 5: Recover the unknown sector key (brute-force)

Armed with the 32-bit Kkeystream segment (and the knowledge of N2), the
attacker now works offline (on their computer) to find which uU48-bit key
could have produced that keystream. Essentially, the attacker is solving
for Key Y. Because of the information gained, this is a much smaller
search problem than trying 2“® keys blindly.

The attacker can either:

- Brute force test: Try each candidate 48-bit key, simulate the Cryptol
cipher’s first 32 bits of keystream for nonce N2, and see if it matches
the captured keystream. The correct key will produce exactly the
keystream that was observed. This is a check that at most 65,536 keys
need to be tried, which is extremely fast (on the order of 0.05 seconds
in software, or even faster with specialized hardware) [5].

- Direct computation: Use the mathematical structure of Cryptol to deduce
the key bits. For instance, researchers found that only the odd-
numbered bits of the LFSR are involved in generating those first 32
keystream bits, allowing a direct recovery of those bits of the key and
leaving only 2% possibilities for the even bits [1]. The result again
is about 65k candidates to test.

In practice, attackers often repeat the nested auth process a few times
with different nonces to absolutely confirm the key and eliminate any
remaining ambiguity [2]. For example, they might perform Steps 2-U4 two or
three more times (getting new random N3, N4, etc., each time deriving
another 32-bit Kkeystream slice under the same unknown key). The true key
will be the one candidate that is consistent with all the observed
keystream pieces. Each new attempt dramatically reduces the candidate pool
— after even 2 attempts, the correct key is usually obvious. In fact, the
literature shows that about 6 successful nonce captures (with parity
guesses) are enough to uniquely determine the 48-bit key with high
confidence [1] [5]. Often, it’s even faster; one high-level description
notes that “repeating the process two to three more times” is enough to
conclude the key [2].

At this stage, the attacker has recovered the secret Key for Sector Y.
They can verify it by authenticating normally to that sector (outside the
nested context) to ensure the card accepts it. Once verified, the attacker
now Kknows another sector’s key without ever having had it given to them.



Step 6: Repeat the attack for other sectors

With Key Y recovered, the attacker can rinse and repeat the process for
other sectors on the card [1]. Each newly recovered key becomes a new
“known key” that can be used to mount a nested attack on yet another
sector. The attacker can systematically go through all 16 sectors of a
MIFARE Classic 1K card (for example) until all keys are known. This means
the attacker has effectively “dumped” the entire card’s secrets. At this
point, they can read or modify any data on the card or even clone the card
completely since they possess every key.

A few notes on efficiency and real-world use:

- Often, many sectors might share keys (some deployments use the same key
for multiple sectors), so in reality you might not need to do separate
attacks for every single one — a few Key recoveries can unlock multiple
sectors.

- The nested attack is very fast for each sector once one key is known.
Literature reports that recovering a new sector key via nested attack
“only requires about 8 authentication attempts” on average [6] — this
is a matter of milliseconds. In practice, some tools have been able to
retrieve all of a single MIFARE Classic card’s keys in seconds. For
example, one demonstration combined first-key recovery and nested
attacks to clone a card in under 10 seconds [7].



How the attack leverages nonces, parity, and
weak PRNG

Here we will recap the key points of why this attack works, emphasizing
specific roles:

- Nonces (card-generated random numbers): The nonce is supposed to add
unpredictability. In this attack, however, the nonce becomes a tool for
the attacker. By capturing one nonce in plaintext and forcing the next
one to be encrypted, the attacker creates a known-plaintext scenario
(they eventually know N2 and see {N2}). The nonce essentially gives the
attacker a chunk of cipher input vs output to analyze. The fact that
MIFARE’s nonce space is small (16-bit effective entropy) and repeats
predictably is a huge weakness [2]. The attacker capitalizes on this by
predicting the nonce and leveraging it to get a keystream. Without the
nonce, the attacker would have no starting point; without the weak RNG,
the attacker couldn’t guess it so easily.

- Encrypted responses and keystream: When the card sends an encrypted
challenge {N2}, it’s using the secret key’s keystream - effectively
“showing” the attacker the result of XORing something secret with
something known. Once the attacker figures out the plaintext behind
that encrypted response, the keystream is revealed [2]. The keystream
is crucial because it ties directly to the secret key’s state. Think of
the keystream as a fingerprint of the key: if you have enough of it,
you can identify the key (since only the correct key would produce that
exact Keystream). The offline nested attack is essentially a way to
extract a segment of keystream from a card without knowing the key, by
using a known plaintext nonce.

- Parity bits: Parity bits play two roles in these attacks.

a) During the nested attack’s nonce prediction, the parity of the
encrypted nonce leaks partial information about the plaintext nonce
[1], cutting down the guesswork significantly. It’s like a crossword
puzzle hint - you know some letters must fit a pattern. Those 3 bits
of leakage (for a 32-bit nonce) might not sound like much, but
reducing possibilities from 65k to about 8k is a big jump in
efficiency [1].

b) During key recovery (especially the Darkside variant or if the
attacker intentionally sends wrong authentication data), parity bits
can be used to provoke the card into giving an encrypted error code.
If the attacker guesses the parity bits correctly for a response but
the response itself is wrong, the card will send a 4-bit NACK
(negative acknowledgement) encrypted with the keystream [d4]. Since
the NACK is a small known value (typically 0x5 denoting auth
failure), the attacker can XOR the encrypted NACK with the Kknown
plaintext NACK to get 4 bits of keystream. This actually leaks 12
bits of the secret key’s state at a time because those 4 keystream
bits correspond to 12 bits of entropy of the u48-bit key in Cryptol



[1]. By repeatedly attempting auth with randomly guessed (incorrect)
data but correct parity, eventually (on average 1/256 tries) the
parity will by chance be right and yield an encrypted NACK [1]. Do
this a few times (approx. 6 successful NACKs) and you accumulate
enough Keystream bits to deduce the entire key with a brute force
[1]. This “parity-NACK” approach is exactly how the MFCUK tool
recovers a key when none are known: it’s slower, but it works by
leakage. In summary, parity bits - meant for error checking -
ironically become an information leak that both speeds up nonce
guessing and even allows direct key leakage via error messages.

c) Weak PRNG: The pseudo-random number generator in the card is an LFSR
that always starts from the same state on power-up [d4]. This means if
you can time when the card was powered (or you power it yourself),
you have essentially a deterministic sequence of “random” numbers.
Even without power-cycling, the RNG has a short cycle. The attack
takes advantage of this by tightly timing the two authentications. As
J. Feng’s card hacking summary puts it, “the distance between
challenge nonces used in consecutive attempts strongly depends on the
time between those attempts”, making the nonce predictable [2]. The
short period (2!¢) further ensures the card’s random output isn’t very
surprising [2]. In cryptography, a good RNG should never be
predictable — here, predictability breaks the security. The attacker
effectively “knows what the card will do next” in terms of random
challenges, which undermines the whole premise of a challenge-
response.



Real-world tools: MFCUK and MFOC

In practical scenarios, attackers don’t perform the above steps manually;
they use specialized hardware and software:

- MFCUK (MiFare Classic Universal Toolkit): This is an open-source tool
that implements the Darkside attack (among others) to recover at least
one key from the card when you start with nothing. It automates the
process of sending many authentication attempts with guessed parity to
induce encrypted error codes and uses those to brute-force a key [4].
In essence, MFCUK will find one sector key by exploiting the
parity/NACK vulnerability. This may take a bit of time (several minutes
in some cases, as it involves thousands of attempts), but it requires
only the card and no prior knowledge of a key. Once one key is
obtained, the attacker can switch to the faster nested attack for the
rest.

- MFOC (MiFare Classic Offline Cracker): This tool automates the offline
nested authentication attack. Given one known key and access to the
card, MFOC will perform the nested auth on other sectors, gather nonces
and encrypted responses, and calculate the unknown keys. MFOC is
extremely fast at recovering keys from MIFARE Classic cards [3].

In practice, tools like the Proxmark3 (a powerful RFID/NFC device) have
scripts or commands (e.g. ‘hf mf nested‘') that essentially invoke these
techniques. For example, using Proxmark3, an attacker can run a command
that first uses MFCUK logic to grab a key, then immediately uses MFOC
logic to dump the rest of the keys. The output is a list of all sector
keys and can often be obtained in a matter of seconds.

To illustrate, security researchers demonstrated that combining a quick
Darkside attack for the first key (~300 queries to the card) with the
nested attack for subsequent keys allows cloning a MIFARE Classic card in
under 10 seconds [7]. This was far faster than older methods and raised
awareness that no MIFARE Classic card is safe from a determined attacker.



Conclusion

The offline nested authentication attack shows how a combination of minor
weaknesses can be exploited in clever ways to break a cryptographic
system. In this document we looked at simple analogies and step-by-step
reasoning to see how an attacker can start with one sector key and end up
with all the keys to the card.

In summary, the attacker leverages a known key to get inside an encrypted
session, nests a new auth to trick the card into encrypting a fresh random
challenge with an unknown key, then uses knowledge of the card’s poor RNG
and parity leakage to figure out that challenge. This gives a slice of the
keystream, which is the golden thread leading back to the unknown key.
With a bit of calculating, the key is recovered. Repeating this process
opens up the entire card.

To someone with limited cryptographic background, it’s amazing (and
perhaps alarming) to realize that by simply asking the card a few clever
questions, one can completely break its security. The takeaway is that
even devices marketed as secure (like MIFARE Classic) can have design
flaws that render their security ineffective. Attacks 1like this show the
importance of properly designed encryption protocols and not just relying
on “security by obscurity.” MIFARE Classic has been deprecated in favour
of more secure applications and newer card standards like MIFARE Plus and
MIFARE DESFire which use stronger protocols to prevent these kinds of
attacks.
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